
Welcome To Grinnell!

An integer is a whole number, either positive or negative.

Examples: . . . ,−2,−1, 0, 1, 2, . . . Non-examples: 1
2
, π,
√

2,−100.1, . . .

We aim to find the area of a polygon with vertices on integer points. A polygon is a

closed shape made of straight lines that don’t intersect, with no holes. The edges and angles

do not have to be the same size.

Examples of polygons: Nonexamples of polygons:



Points on the xy-plane where both coordinates are integers are called, uncreatively, in-

teger points. For example, points like (0, 1), (2,−5) or (−20,−24) are integer points, while

(1
2
, 2) is not. Integer points are some times called lattice points, because they look like

they make a lattice on the xy-plane.

Figure 1: From homedepot.com, “8 ft. x
4 ft. Pressure Treated Wood Pine Square
Privacy Lattice”

Figure 2: The set of integer points in the
xy-plane

THE QUESTION: Suppose all corners of a polygon are at integer points. Can we figure

out the area of the polygon by counting the number of integer points that occur in the

polygon?

For example, the following triangle contains 5 integer points:

Can we figure out the area of this polygon without having to do a bunch of nasty calculations?
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1. It turns out that just counting integer points is not quite enough. Find the area1 of both

the polygons below and count the number of integer points they each contain.

Number of integer points

in the polygon:

Area of the polygon: :

Number of integer points

in the polygon:

Area of the polygon: :

2. Keeping the example above in mind, explain why it would be impossible to figure out

the area of a polygon by only counting the number of integer points that occur in the

polygon.

Notice that the polygons in question 1 have different numbers of interior integer points

and boundary integer points, so maybe we can use that data to figure out the area of

a polygon.

1Recall: the area of a triangle is 1
2×base×height, where the base and height are perpindicular to each

other.
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3. Find the area, number of interior integer points, and number of boundary integer points

for a bunch of polygons. There are some polygons provided, but you can also draw your

own (keeping in mind that you want to calculate their areas, so they shouldn’t be too

weird). Record your data in the table below.

Form a conjecture (math-word for “guess”) about the relationship between the area of a

polygon, the number of interior integer points, and the number of boundary grid points.

Area Number of interior integer points Number of boundary integer points

Page 4



Let P be a polygon with vertices that are integer points, let I be the number of interior

integer points of P , and let B be the number of boundary integer points of B. Pick’s

Theorem says that the area of any polygon with vertices on integral points is given by

Area =

4. Use Pick’s theorem to find the areas of the following polygons.

(a)

area =

(b)

area =

(c)

area =

(d)

area =

(e)

area =

5. Draw a weird shape with vertices at integer points and swap your paper with someone

else. Have them find the area of your shape.
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But how can you be sure this will be true for every single polygon, without drawing

them all? Proving statements are true is what mathematicians do all day!

6. In this part, we will prove that Pick’s theorem is true for lattice-aligned rectangles.

Example of a lattice aligned rectangle: A rectangle that is not lattice aligned:

This is a common proof technique: prove a fact for simple cases, and see if you can use

those cases to prove it in more generality.

Suppose a rectangle is aligned with the integer lattice, has corners on integers, and has

length m and width n.

(a) What is the area of the rectangle?

(b) What is the number of boundary points of the rectangle?

(c) What is the number of interior points of the rectangle?

(d) Prove that Pick’s theorem is true for lattice-aligned rectangles. (Hint: start with

an expression for I + B
2
− 1, using the previous parts).
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7. Now we will prove Pick’s theorem for lattice aligned right triangles. Suppose a triangle

has legs of length m and n.

(a) Count the number of lattice points along the legs of the triangle. Check your answer

with some of the drawings you made previously.

(b) The number of lattice points along the hypoteneuse of a triangle is harder to count;

the hypoteneuse might hit lots of integer points, or some, or none other than the

corners:

Call the number of lattice points along the hypoteneuse, not counting the corners

of the triangle, k. For example, in the picture above, for the leftmost triangle k is

3, for the middle triangle k is 2, and for the rightmost triangle, k is 0.

If the triangle is m by n and there are k lattice points on the diagonal, how many

total boundary integer points are there for a lattice aligned right triangles? Your

answer should be in terms of m,n and k:

(c) If the triangle is m by n and there are k lattice points on the diagonal, how many

total interior integer points are there for a lattice aligned right triangles? Your an-

swer should be in terms of m,n and k:

Turn the page upside down for a hint. 2

2

Hint:Considertherectanglewithwidthmandlengthnformedbythelegsofthetriangle.Wealready
figuredouthowmanyinternalintegerpointsthisshapehas.Someofthosewillliveonthehypoteneuse.
Halfofwhatremainswillbeintheinteriorofthetriangle.
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(d) Prove that Pick’s theorem is true for lattice-aligned right triangles.

8. Now we will prove Pick’s theorem for any triangle. There are a couple of cases to

consider, but basically all the cases look like one of these examples:

Case 1 Case 2

In the above pictures, we know that Pick’s theorem is true for the rectangle and triangles

A,B and C, but we haven’t proven it for triangle T .

We will prove the theorem for the first case, but try the other case on your own!
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9. Suppose T is an arbitrary triangle (not the specific one above), and we form a rectangle

similar to in the diagram. Let’s use the following notation:

Call the rectangle formed by all four triangles R. Let

It = number of interior points in triangle T

Bt = number of boundary points in triangle T

At = area of triangle T

and similarly, Ia is the number of interior points in triangle A, Ir be the number of

interior points of the rectangle, and so on.

(a) Find an equation that describes how At is related to Ar, Aa, Ab and Ac.

At =

(b) Find an equation that describes Br in terms of Ba, Bb, Bc and Bt. Be careful of

overcounting.

Br =

Check your answer for the specific example:

Br in the specific example =

(c) Find an equation that describes Ir in terms of Ia, Ib, Ic, It and Bt. Be careful of the

corners of T !

Ir =

Check your answer for the specific example above.

Ir in the specific example =
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(d) Use the fact that we have proven that Pick’s theorem is true for triangles A,B,C

and rectangle R and your answer to the previous problem to find an equation for At

in terms of Ir, Ia, Ib, Ic, Br, Ba, Bb and Bc. Your equation can have other constants

in it.

At =

(e) Use the fact that we have proven that Pick’s theorem is true for triangles A,B,C

and rectangle R, and your answers to the previous questions, prove that Pick’s

theorem is true for arbitrary triangles (at least in case 1).
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10. We have shown that Pick’s theorem is true for any triangle. Now we will prove that if

Pick’s theorem is true for two polygons, P1 and P2, then Pick’s theorem is true for the

bigger polygon P formed by “joining up” P1 and P2.

For example, in the diagram below, we know that Pick’s theorem is true for the two

triangles. This will allow us to show that Pick’s theorem is true for the weird hexagon

formed by smushing the two triangles together.

(a) Call IP1 the number of interior points in polygon 1, and so on. Assume that the

common line shared by P1 and P2 contains m integer points. Call I the number of

interior integer points in P , B the number of boundary points of P , and A the area

of P .

Give an expression for A in terms of AP1 and AP2 .

A =

(b) Recall that, by assumption, Pick’s theorem is true for P1 and P2. Give an expres-

sion for A in terms of IP1 , IP2 , BP1 and BP2 .

A =

Page 11



(c) Any interior integer point of P is an interior point of P1 or P2 or is on the edge

shared between them. Find an expression for I in terms of IP1 , IP2 and m.

I =

Check your answer on this example:

(d) Find an expression for B in terms of BP1 , BP2 and m.

B =

Check your answer on the example above.

(e) Use the previous parts to prove Pick’s theorem for P .
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11. The last part of the proof of Pick’s theorem is to show that any polygon with integer

vertices can be broken up into triangles with integer coordinates. We won’t prove this

part (/). Convince yourself it is true by breaking up each of the following polygons into

triangles with integer coordinates.

(a)

(b)

(c)

12. Challenge somebody else: draw a polygon and swap your paper with someone else to

make them triangulate it. Remember that the triangles must have vertices on integer

points!
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We did it!!

Thank you for your hard work!

If you have any questions, don’t hesitate to reach out at kenkeljennifer@grinnell.edu!

I drew a lot of inspiration from notes on Pick’s theorem by Tom Davis which can be found

at https://mathcircle.berkeley.edu/sites/default/files/archivedocs/2012_2013/

lectures/1213lecturespdf/BMC_Int_Sept4_2012_Picks.pdf.

The outdoor activity we did is called “Jumping Julia” and came from the Julia Robinson

Mathematics Festival. See their website here:

https://jrmf.org/puzzle/jumping-julia/,
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